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Ahstract, Accidental degeneracy of levels is studied in the spectrum of the Hamiltonian
Abstract. Accider aegeneracy ol levels 1s studied 1€ specirur {he nam

used frequently in applications, which is a linear combination of spherical tensors of rank
n =<6 invariant with respect to transformations of a cubic group. The degeneracy arises
only at definite values of the Hamiltonian parameters and seems to be irrelevant with
respect to increasing Hamiltonian symmetry. The basis of irreducible representations pv
of the cubic group is ¢onstructed in the space of irreducible representations I of the
S0(3) group.

1. Introduction

The degeneracy of levels in the spectrum of any Hamiltonian is usually considered to
be related to its symmetry with respect to some group G. However, Moshinsky and
Quesne (1983), Berry and Wilkinson (1984}, Dirl and Moshinsky (1985} and Siddail
and Sullivan (1988) have treated a number of instances where the level degeneracy
appeared to be irrelevant to the occurrence of a symmetry group for a Hamiltonian.
Any consistent theory for the given type of phenomena has not been constructed yet.

Below we examine in detail the term crossing in the spectrum of the cubic-symmetry
Hamiltonian of the following type used frequently in applications:

H=a,T.+a,To+asTs. (1)

The term crossing gives rise to an accidental degeneracy of eigenvalues which seems
not to be associated with increasing Hamiltonian symmetry and, therefore, presents
another example of ‘degeneracy without symmetry’. The rank-n tensor operators T,
in (1) are invariants of one of the cubic groups (for definiteness, we shall treat the
octahedral group O). They are of the form

T=to=J=Ji+ 13+ )]
Ty= VR HVE(+ L) (2)
To=Vies =W f5+15).
Here we have chosen the axis of quantization to be the four-fold symmetry axis of the
octahedral group. The matrices of tensor operators {; on the basis of functions

|[JM)= Y, (—J =< M < J) labelled by angular momentum J and its projection M may
be easily calculated using the Wigner-Eckart theorem

J "
JMt"JM’=—1"‘M( )Jr J 3
(JM(t3|IM )= (-1} _MqM<IIII> (3)
0305-4470/91/132961 +16803.5¢ © 1991 1OP Publishing Lid 2961
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(‘Il Jz .I‘;)
MJ Mz M3

is the Wigner 3-j coefficient, and the reduced matrix elements (J|¢"||J) which do not
depend on M or M' may be included into the phenomenological constants a,, a, and
ae of the Hamiltonian (1).

Hamiltonians of type (1) are used to describe the spectra of impurity ions in a
crystal field of cubic symmetry (see, for example, Sviridov and Smirnov 1977). In this
case, the ion term E, with angular momentum J splits into a number of levels E .,
labelled by symbal I' of irreducible representations (irreps) D" of the group O entering
the expansion

D’ =§: v-D' (4)

where

where D’ are irreps of the SU(2) group and v are multiplicities of the irreps D', The
energies E;r; are usually calculated by diagonalizing the matrix of the operator (1) on
the basis of functions Yj,,.

The Hamiltonian (1) is used also to describe the rotational spectra of the non-rigid
cubic-symmetry molecules {(Hecht 1960, Moret-Bailly 1961, 1965). In this case the
energies of rotational levels E;r; are calculated by diagonalizing the matrix of the
Hamiltonian on the basis of the symmetrical-top eigenfunctions |JMK)=

(27 +1)/8%° Dk (aBy). However, the matrix of effective rotational Hamiltonian
(1), allowing for the effects of non-rigidity of a molecule, on the basis of the symmetrical-
top eigenfunctions |JMK), coincides with the matrix of the Hamiltonian of an impurity
ion in a crystal field on the basis of the functions Y. Therefore, the two problems
may be treated in parallel. Below we shall mainly discuss the rotational spectra of
cubic-symmetry molecules, but all results may be easily reinterpreted in terms of the
spectra of impurity ions in the crystal field.

Studying the rotational spectra of cubic-symmetry molecules is of particular interest
because states with very high values of angular momentum (J ~ 100} are observed
experimenially. In this case the eigenvalues of the operator (1) with a given value of
J are grouped into close and almost degenerate six- and eight-fold clusters {Dorney
and Watson 1972, Harter and Patterson 1977, 1979, Fox et al 1977, Zhilinskii 1979,
Braun er al 1985) and, for some particular choices of the Hamiltonian parameters,
12-fold level clusters are also formed in the spectrum.

The visual geometrical explanation of the level clustering phenomenon (Harter and
Patterson 1977) suggests that levels forming a cluster have an identical physical origin
and correspond to rotation of a molecule about n-fold symmetry axes C,. The
equivalence of symmeiry axes of the same type C,, causes degeneracy of the correspond-
ing levels. So, the six-fold clusters, for example, are formed by degenerate levels
corresponding to molecular rotations about three four-fold symmetry axes C, (allowing
for the two feasible directions of rotation about each of the axes), while the eight-fold
clusters are formed by levels corresponding to rotations about four three-fold symmetry
axes C; and the 12-fold clusters are connected with rotations about six two-fold
symietry axes C,.

In the classical limit J > o0, the levels forming a cluster are strictly degenerate.
Nevertheless, the clusters split due to the quantum tunnel effect which causes the
coupling between rotations about different equivalent symmetry axes. In this case,
obviously, each of the levels may be labelled by irreps D" of the group O. Thus, the
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clusters have the structure I';+I,...+k, i.e. they are formed by K close levels
corresponding to the irreps D't, D', ..., D" of the group O. Of course, each level
pertaining to symmetry I’ is rigorously degenerate and the multiplicity of degeneration
is equal to the dimension dim I of the irrep D", So, for example, six-fold clusters are
cither of the type F,+ F, (two close triplets pertaining to symmetry F, and F;)} or
A+ E+F, (A +E+F,} (three close levels: non-degenerate pertaining to symmetry
A; (A,), doublet E and triplet F, (F,)).

It should be borne in mind that the operator T, =J? entering (1) fails to give rise
to the splitting of levels with the same value of J due to the effects of the non-rigidity
of a molecule, and defines only the ‘centre of gravity” position of the terms characterized
by a certain value of the angular momentum J, Therefore, in the study of the structure
of rotational spectra characterized by a given value of J, i.e. in the study of the level
clustering phenomenon and of the crossing of levels comprising the above-mentioned
spectra, it is of interest to examine only the a,7T,-type terms with n=4 in (1}. So, we
shall operate with the effective rotational Hamiltonian

h(8)=T,cos @+ T,sin ® (5)

where the parameter 8 defines the relative weights of the tensor operators T, and Ts.

Lea et al (1962), Harter and Patterson (1979) and Braun et al (1986) examined the
dependence of the eigenvalues E;r; of the operator (5) on the parameter 4. From their
numerical calculations, Lea et al (1962} inferred a simultaneous crossing of three
terms, A,, E, F, (or A,, E, F;), at a single point at certain values # = .. Harter and
Patterson (1979) called these points the triple points and analysed them in terms of
an approximate asymptotic theory. At certain values 8 = 8,4, the crossing of two terms
F, and F; eccurs also at a definite point. We shall call points of the latter type double
points.

Below, we shall examine the double and triple points in the spectrum of the
Hamiltonian (5) in terms of an accurate algebraic approach. We shall demonstrate
that the occurrence of double and triple points in the spectrum of the Hamiltonian
(5) is quite natural and exhibits a regular behaviour. We shall rigorously prove that
at definite values 8 =@, i=1,2, ..., inthe general case, the spectrum of the Hamiltonian
(5) contains several triple and/or double points, rather than a single point, i.e. several
triplets and/ or pairs of degenerate terms, rather than a singie triplet or pair, are present
in the spectrum at several different values of energy.

The double and triple points manifest themselves in the strict degeneration of some
of the six-fold clusters and/or in the strict degeneration of a pair or triplet of levels
entering an eight- or 12-fold cluster. Note that the double and triple points may occur
in the spectra of levels with sufficiently small values of J, when the clusters are not
weli formed. The level crossing associated with the double and iriple poinis originates
from the octahedral symmetry of the problem, and arises naturally for the spectra of
impurity ions in the crystal field as well as for the rotational spectra of cubic-symmetry
molecules.

We make use of the algebraic methods associated closely with constructing the
basis of irreps D" of the group O in the space of irreps D’ of the SO(3) group. In
pafailm with al.uu_ymg the double and tnp%e pomis of the cubic Hamiltonian, we shall
construct the complete set of cubic harmonics W, The set appears to be nearly the
same as the one proposed by Cheglokov and Ulenikov (1985). Note that these authors
have not given the full proof of the linear independence of the basis functions, and

our study closes the problem.
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The paper is organized as follows. In section 2 we discuss some properties of
effective Hamiltonian (5), write down projection operators, formulate lemmas and
introduce notations that are used afterwards. Section 3 treats a simple example which
visualizes the physical origin of double and triple points. The algebraic treatment of
double and triple points in the general case is presented in sections 4 and 5. A discussion
of the results is presented in section 6.

2. Term crossing in the spectrum of the effective rotational Hamiltonian

From the explicit form (2) of the operators T, and Tj it is seen that the matrix £ of
the Hamiltonian (5) in the basis of the functions |[JMK)=|JK} is tridiagonal, i.e. only
the matrix elements  x,- = (JK|h(@)|JK"Y= (JMK |h(8)|JMK" with K'= K, K +4 are
non-vanishing. The eigenvalue problem for the Hamiltonian (5) is of the form

@K,K—4C'}(—4+(£)KK _E:\)C?{ +©K,K+4C?<+4=O- (6)

Obviously, the set of equations (6) may be broken into four independent subsets
characterized by a particular value of ¢ = K mod 4, i.e. the matrix £ of the Hamiltonian
h(#) may be decomposed into a direct sum of the type § =H°@H' D H*D H°, where
the matrices $7 with matrix elements 97 .= (L 4n+q|h(8)|], 4n'+q), q=0, 1, 2, 3,
are tridiagonal, and the non-vanishing matrix elements 2, are the ones with n=n’,
n'+ 1, Thus, we actually meet the problem of diagonalizing four Hermitian tridiagonal
matrices $%

The eigenfunctions C, =C{ of the Hamiltonian h(®) are linear combinations of
the basis functions |gn)=|J, 4n+q): C¢=X, C*|qn), and the coefficients C? are com-
ponents of the eigenvectors {C*}={C}} of the matrices £ In what follows we shall
denote by n,,,, (n,,) the maximal (minimal) possible value of the index n of the basis
functions |gn), and by K., =4n,.,+q (K&;,=4n,,+q) the maximal (minimal)
possible value of the projection K of angular momentum on the internal molecular
frame fixed to a rotor for given values of J and g N¥9=n_, —n_, +1 is, obviously,
the dimension of the Hilbert space spanned by the functions |gn), and the matrices
97 are N9 x N7 matrices.

The eigenfunctions C, of the Hamiltonian (5) may be labelled by the irreps D' of
the group O. The discrimination of the eigenfunctions C, belonging to the irrep D'
of the group O may be done using the projection operators

Prﬁdl;;r T xi(g)D(g) (7)

4
where g is an element (rotation)} of the group O, D(g) is the corresponding operator,
and y(g) is the character of the element g in the irrep D", Using (7) it is straightforward
to obtain matrix elements P ={(JK|P"|JK') of the operators P' on the |JK) basis:

P =80k moadl Sx+(—1)8 ¢ _x +2D ki ]

PRy =483 g moasl kit (—1)8 0= 2D ki)

PRk =180 kmoaal Sxx+ (=18 x k= (-1)* D] (8)
PR =318k A1 = 82,k moas) —(—1)"8 k. k B0,k mads+ 81,k moa2 D]

P =2 8kxA1— 80,k moas) —(=1)8 k- k82 k mods — 81k moa2 P kx]

where D xx =286,k - kymoasd kx{7/2), and dy,(B) is the Wigner d-function.
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The matrices of projection operators P are seen from (8) to be diagonal with
respect to the index g = K mod 4. Thus, the eigenfunctions C{ and respective eigen-
values E], obtained by diagonalizing the matrices $% may be labelled by the index I
of the irreps D" of the group O. The set of irreps D' realizable in the Hilbert space
spanned by the functions |gn) with a given value of g may be easily determined from
(8). The results are summarized in table 1.

Table 1. Irreps D of the group O compatible with a given value of ¢ = K mod 4.

g=K mod4 0 1 2 3

Irreps of the group O A — — —
— — A, —
E — E —
FI FI e Fl
- £ Fy £

Note, that if the irrep D' is compatible with a given value of g, then among the
eigenfunctions C § there should be found vy eigenfunctions C¢, pertaining to symmetry
I', and the dimension of the matrix $% N9=2Z, v, where the summation is assumed
over all I' compatible with a given value of g¢. The two-fold degeneracy of the eigen-
values of the matrix $ pertaining to symmetry E and three-fold degeneracy of the
eigenvalues of the same matrix pertaining to symmetries F, and F, results from the
coincidence of eigenvalues E&, and Ef, of different matrices §* and §7 pertaining
to the same symmetry I" (=E, F; or F,). Nevertheless, the set of cigenvalves E},
pertaining to a given symmetry I of any matrix $? is non-degenerate. At the same
time, the occurrence of double points of the type F,+ F; and of triple points of the
type A,+ E+F, or A;+ E + F; is associated with the degeneration of levels pertaining
to different symmetries I" and I, and, as seen from table 1, is associated with degener-
ation of a number of eigenvalues of one of the matrices £

Now let us present two lemmas (Voevodin and Kuznetsov 1984) concerning the
general properties of eigenvatues E,, eigenvectors {C*} and respective eigenfunctions
C,=X, Ci|n) of the Hermitian tridiagonal matrices 8. All the non-diagonal matrix
etements B, .., are assumed to be non-zero: B, ., # 0.

Lemma 1. All the eigenvalues E, are non-degenerate,

Lemma 2. The extreme components of any of the eigenvectors {C*} are non-zero, i.e.
Ch...720and C;,_ #0, while all the eigenfunctions functions C, enter the decomposi-

Rrin

tion of the extreme basis functions
|nmax(min)) = Z C:mux(min)cf\ (9)
A
with coefficients €2 # 0.

mux(min}

From lemma 1 it follows immediately that, if all the non-diagonal matrix elements
of the effective Hamiltonian g x.a ={/K[h(®)|J, K £4)#0, the spectrum of the
eigenvalues of any matrix 97 is non-degenerate. Thus, the formation of double and
triple points is associated with vanishing of non-diagonal matrix elements of the
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operator (5) at certain values of the parameter ® =0', 7, ..., which may be found
from the equation
cos O (JK;| T,|JK; — 4)-+sin O (JK,| T4 JK; — 4) = 0. (10)

The solutions @' =0, for (10) are specified below by values of K; at the fixed
value of ¢ = K; mod 4, i. e the index i labelling the special points @=0'= =@, is to be
found from the equation K;=4n,+ g =4(nn.t1—i)+gq,i=1,2,.... Due to the sym-
metry properties of the matrix 9,

Pk =Pxx =D k-x=-k-x (11)

which may be easily obtained from (2), (3} and (5), it is sufficient to treat only the
K-values belonging to the interval 2 < K; < J. It will be shown that each of the solutions
©' for (10) is in correspondence with the occurrence of double and/or triple points
in the spectrum.

From (10) and (11) it follows that at each special point ®=0,, i=1,2,..., four
non-diagonal matrix elements of the matrix £ vanish simultaneously:

@K,,K‘-M«I: -@K,ﬂt_x, = @-x.—u,—x; = @—K,—,—K,+4 =0 (12)

{except for the case K, = 2, when only two non-diagonal matrix elements £, .= .=
0). Thus, if g is even, than at the special point @ =@}, the matrix $? appears to be of
a block-diagonal structure and may be decomposed into the direct sum of the type
7= HY® HY®H®. The matrices HY are N7 x N matrices, where N'V= NV =

i and N® = N?-2j and the indices n and n’ labelling the matrix elements H'\)., H.
and H2) belong to the intervals {#;, nyal, [—2+1~—¢/2, n,—1] and [ Agin, —1; — /2],
respectively. The matrices HY’ are, obviously, tridiagonal. Moreover, due to (11),
matrices H" and H"® are identical.

If g is odd, then $* = H'V@® H'® at special points ® =&/, where H" are tridiagonal
NUx N matrices with N = i and N = N — i, The indices n and n " [abelling the
matrix elements H', and H) belong to the intervals [#;, ya,] and [ng,, 1~ 1],
respectively.

In studying double and triple points we are interested only in the spectra of
submatrices ©* that have a block-diagonal structure due to the vanishing of non-
diagonal matrix elements at special points @ =@}. If g is even, then £ is the only
block-diagonal submatrix of the matrix £. If g is odd, then two submatrices ' and
$° are block-diagonal but, because of (11), the submatrices P and D’ are identical,
So, for any g it is sufficient to study only the spectrum of the submatrix £? at the
special point © = 0.

3. A simple example

In order to show the physical origin of the accidental degeneracy in the spectra of the
Hamiltonian (5), let us discuss a simple example.

Suppose J =4. In the case g =1, H*' is a 2x 2 matrix. It has two eigenvalues E 5,
and £, pertaining to the symmetries F, and F;, respemvel y. For each of the symmetries
F, and F, there is the unique cubic harmonic ! g=1.s=4 (Sviridov and Smirnov 1977):

=VIlg=1,00+vilg=1, -
=Vilg=1,00~vilg=1,-1).

qlJ4

(13)

qlJ’4
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The functions ¥,_, ;., are, obviously, the eigenfunctions of the Hamiltonian (5}
at any value of the parameter ®, The function }q =1, 0} is seen from (13) to be a linear
combination of the functions ¥, ,_, and W'z ;.. Nevertheless, if @ = @1}, then
the matrix $?=' is diagonal and the function |q—1 0) is an eigenfunction of the
Hamiltonian (5). This is possible if only the terms E £, and E p, are degenerate. Thus,
a double point of the type F,+ F, occurs in the spectrum of the effective Hamiltonian
(5) when © attains the value @_,.

Now let us discuss the case g =0. For each of the symmetries A,, E and F, there
is also the unique cubic harmonic \Ifl;:l_ s=4 (Sviridov and Smirnov 1977):

Wit =VE[lg=0,1)+|g=0, ~1)]+VZ|g=0,0)
VE g sma=va4Ilg=0,1)+|g=0,-1)]-V]g=0,0) (14)
Wl ma=V3[lg=0,1)~]g=0,-1)].

The 3 x 3 matrix $?=° has three eigenvalues E,, Ex and EF , and at any value
of the parameter © the corresponding eigenfunctions C{™%=w¥! g=0J=4> 1 =Ay, E, F|.
Ife= G)q o, then the matrix §7~° appears to be diagonal, and the functions

Iq 0 :‘tl) ‘[2: q= (]_,r 4+\/2_4\Pq =00 = 41“/_1-1’ -OJ 4

(15}
'q 00) ‘/; g= 01 4 \/%q'q=0,J=4

are the eigenfunctions of the Hamiltonian (5), too. This is possible if only Es = Ex =
Ep,. Thus, if 0= @},:0, then a triple point of the type A, + E + F, is present in the
spectrum. Note that all the functions (15) correspond to the same energy.

It is seen that the occurrence of double and triple points in the spectrum at special
values of the parameter ©® = @/, is a direct consequence of two factors: (i) one of the
submatrices £ is block-diagonal (in our example, diagonal) if @ = ©}; (u) the extreme
basis function |gn.,,) is a linear combination of all cubic harmonics IFq s

|qnmax) =>[; Qr qJ' (16)

where the summation is assumed over all I compatible with a given value of q. In our
example, (16) has been verified using the explicit expressions for the cubic harmonics
‘P‘l,;, (13) and (14), which hold for any value of the parameter ®. In the general case,
the analogous expressions will be verified using the properties of eigenvalues and
eigenvectors of the matrices 7 at different values of the parameter © and lemmas 1
and 2. From (16) it follows that, for any I' compatible with a given value of g, the
functions P'|gn,.,) are non-vanishing and proportional to the respective cubic har-
monics ¥;. Thus, our study of the double and triple points is in close correspondence
with the construction of the cubic harmonics of the type P'|gn).

4. Double points of the type F,+ F,

In this section we discuss the spectrum of the matrix §¢ at special points 8 =@, for
the case of odd g.

First of all we shall show that (16) holds for any /=3, when vr =1 and vp,=1.
The matrix $? yields v, eigenfunctions C% Fia belonging to the irrep D' and Ve,
eigenfunctions C¥,, belonging to the irrep D" If © is not equal to any solution @‘
of (10), then by virtue of (9}, the extreme basis function |gn,.,) is a linear combination
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of all eigenfunctions Ct.and CE 2,\ Thus, |qnmax) is a superposition of functions fI"
and @, belonging to the irreps D ©i and D", respectively: |gnm..) =Pk b, where
tbpi = P"|gny.,) 20 and cb,.- = PPgn, ..) & 0 This result surely holds f'or any value
of 0.

Now let ®=0) and i=1. In this case the submatrix H'" is a 1 X 1 matrix. The
function |g, n,,,,) is a single eigenfunction of this matrix and, hence, of the Hamiltonian
h(8}). The respective eigenvalue will be denoted as ES{". In complete analogy to the
example in section 3, we conclude that a double point of the type F,+ F, occurs in
the spectrum at energy E = E{" for @ =0..

The submatrix H” has N® =v, + v —1 non-degenerate eigenvalues E‘?. The
eigenvalue E" of the matrix $? is doubly degenerate, so among eigenvalues E'¥ of
the submatrix H® there is the one equal to E\": E?¥’ = E\"). The respective eigenfunc-
tion C{* is a linear combination of the functions ® ; and @, (note that the projectors
P" commutate with the Hamiltonian A{®), which is invariant with respect to transfor-
mations of the group O, so the functions (I)}l= PHgn,..) and b= P5gn,,.) are
also eigenfunctions of the Hamiltonian (5) corresponding to the same eigenenergy
E{"). From the orthogonality of C{'” to |gfy,,) it follows that C{*¥ = (D |b}. )T —
(DL |0k DL

All the remaining v, —1 eigenfunctions C£3 and vy, —1 eigenfunctions C%3 of
the submatrix H'® pertain to the symmetries F, and F,, respectively. Since |g, . — 1)
is the extreme basis function for the submatrix H?, then, according to (9), it contains
in its expansion

vy VFZ
@ P = 1) =BCIP+ L HICER+ T HICHR (17)
Am=2 A=

all eigenfunctions C{%, C£3 and CEY of the submatrix H*Y with non-zero factors
b, b, and b2, The cigenfunctions CEY, A =2,3,..., v, and @, are, obviously, linearly
independent. Therefore, if vg =2, the projected function

Yr,

PG, Bar = 1) = —b(P | P )P 5, + Z bACHY

is non-vanishing and linearly independent with P"|gn,,,) = @7 . Similarly, if vg, =2,
then the function P*?g, fpn.— 1) 20 and is linearly independent with P™gn,,..).

Now let ®=0."> The 2x2 matrix H'" has two non-degenerate eigenvalues,
E{" and E", and two linearly independent non-vanishing eigenfunctions, C%",
and two linearly independent non-vanishing eigenfunctions, C{"'=C) |gnmna)+
Ch. i@ Ay — 1) 20 and €§V=Ck |qng.)+ Cf,m_,|q, H,..—1)#0. Therefore,
owing to the linear independence of the functions P'|gn,...} and P'|q, nn..—1), the
functions P'C{" and P'C4'" are non-vanishing: P'C?’#0, T=F,, F,. It is clear
that the functions PHC% and P:C7Y are eigenfunctions of the Hamiltonian (5)
corresponding to the same eigenergy E{". Similarly, PC4" and PFC{'" are eigen-
functions of the Hamiltonian (5) corresponding to the doubly degenerate eigenvalue
E{Y. So, for ® =817" in the spectra of the Hamiltonian (5) there are two double points
of the type F,+ F, with energies E{" and E}".

Obviously, the functions P'C{" and P'C “' are linearly independent and, moreover,
are mutually orthogonal because they correspond to different eigenvalues E{" and
ES" of the Hamiltonian h(©,7).

The submatrix H'* has N2 non-degenerate eigenvalues. Among them there are
two eigenvalues, E{ and E”, degenerate with the eigenvalues E{" and E}" of the
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submatrix H'": E{? = E{V, E? = E{". The respective eigenfunctions are linear combi-
nations of the functions belonging to the irreps D and D", In addition, the submatrix
H® has v, —2 eigenvalues E?, corresponding to the eigenfunctions €42 belonging
to the irrep D", and vr,—2 eigenvalues E(ﬁz)A corresponding to the eigenfunctions
%3 belonging to the irrep D™ The eigenfunctions C£2 and C%? are linearly
independent with the functions P|gn..,) and P'|q, A —1), T'=F,, F;. So, using
reasoning similar to the above, we conclude that if »g =3, then the function
PH g, fmay —2) is non-vanishing and linearly independent with the functions P"1{gna,)
and PFi|g, npe —1). Similarly, if vz >3, then the function P|q, ny.,—2) is non-
vanishing and linearly independent with the functions P"?|gn,.,,) and P"q, n., —1).
Now, we may put ®=®f’,, @‘;, ..., and repeat the above reasoning almost word

for word. As a result, the following conclusions may be drawn.

Conclusion {1a). v functions
Prljs 4”max+q)s PFIJs 4(nmax - 1)+q), v PI‘IJQ 4(nmux_ I’I'+ 1)"“1)

{where I'= F;, F, and g=1, 3) are non-vanishing and‘linearly independent, i.e. they
form the basis of the functions belonging to the irrep D' of the group O in the subspace
spanned by the functions |gn) with g=1, 3.

Conclusion (2a). If the parameter @ of the Hamiltonian (5) takes on the values 6 =0,
where @ﬁ, are the roots of (10) for K, =4(n ., —i+1)+q, i=1,2, ..., ¥pm and v, =
min{v e, v}, g=1, 3, then i double points of the type F, + F, occur in the spectrum
of the Hamiltonian (5).

Note that vp +25=N""=N7"" and {vg ~ve[=<1. So, if @=0, and i> vy,
then the dimension N'® of the submatrix H‘® is smaller than the dimension N’ of
the submatrix H", and we may repeat the entire chain of rezsoning, starting from the
extreme basis function |JK 7.} = |g#tmin).

As a result, we obtain:

Conclusion (1b). v functions
Prl-’; 4nmin+q>’ Prl-’; 4(nmin+ 1)+ q): vy Prijs 4(nmin+ ¥r— l)+ q)

(where I'= F;, F, and g =1, 3) are non-vanishing and linearly independent, i.e. they
form the basis of the functions belonging to the irrep D' of the group Q in the subspace
spanned by the functions |gn) with g=1, 3,

Conclusion (2b). If the parameter ¢ of the Hamiltonian (5) takes on the values @ = @;,
where @} are the roots of (10) for K; =4(nu,+i)+q, i=1,2,..., ¥mn, =1, 3, then
i double points of the type F,+ F, occur in the spectrum of the Hamiltonian (3).

5. Triple points of the type of A\ +E+F, and A,+ E+ F,

Examined below will be the spectrum of the submatrix £? at special points @ =@} in
the case of even g. This case may be treated by the method presented in section 4.
Nevertheless, some complications arise from the more complex structure of the matrix
7 in the case of even g.
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It should be remembered that the matrix H* for @ = @ is broken down into three
tridiagonal submatrices: 7= H'""@®@ HP@® H™. The ix i submatrices H" and H',
being identical, yield identical spectra of eigenvalues E|" and E{”, respectively. At a
special point ® =0, we thus have i crossings of, at a minimum, two terms (double
points). Also, some of the eigenvalues E'” of the submatrix H” may equal the
eigenvalues E\"” and E’ of the submatrices H'"" and H', In this case, at the point
e =®f, we deal with the simultaneous crossing of three terms, so some (or all) of the
double points turn into triple points At the same time, if in the spectrum of the
submatrlx H'" there are ny terms Ef ah pertaining to symmetry I, then the remaining

—np terms EZY pertammg to this symmetry being non-degenerate with the terms
E a0 should be sought in the spectrum of the submatrix H®.

Beanng this in mind we may repeat almost word- for—word the reasoning of the
previous section concerning the construction of the set of cubic harmonics. The result
is the following.

Conclusion (1¢). vr functions
Pl‘lj; 4”mz—;lx+ q); Pll‘Is 4(nmax_ 1) +q>s ey Prlja 4("max— y1-+ 1) +q)

(where g=0,2andI'=A,, E, Fiforg=0and ' = A,, E, F, for g = 2} are non-vanishing
and linearly independent, i.e. they form the basis of the functions belonging to the
irrep D" of the group O in the subspace spanned by the functions |gn) with ¢ =0, 2.

Conclusion (1d). v, functions
Prlj, 4nmin+q)s Prl-’, 4(nmin+ 1)+ q>9 Ty Prl_f’ 4("min+ Yr— l)+ q)

(whnrsn_ﬂ 2andl'= ‘Ai F F f"nrn_ﬂslndr-—-A F F.f‘nrnd')\nrﬁnnn vanichineg

P y Ay 2 2Ty avy & Siiiiigy

and hnearly independent, i.e. they form the basis of the funcnons belonging to the
irrep D' of the group O in the subspace spanned by the functions |gn) with g =0, 2.

Studying the spectrum of the matrix £? we deal only with the terms pertaining to
symmetries F,, E or A, in the case of g =0 and with the terms pertaining to symmetries

= E ~r i tha naca nf + =7 Thaca racac will ha traatad tacathar halaw ticing tha
iy, 1 OT nz il 00 CASC 1 f = 4. 10050 LdSC5 Wi O0 ICAICG6 (GECUACT OO0V, ubing nd

short notation DF and D* for the irreps D™ and D* in the case of g =0 and for the
irreps D% and D™: in the case of q¢=2. We shall discuss only the spectra with J >3,
when v, < vp < v _

The structure of the spectrum of the matrix $7 at special points @ = @, depends

on the value of i= N, i.e. on the dimension of the submatrix H". We shall treat
the values i== N9/7 = fn +ygt o, 1/2. which corresnond to the values I( =2in (l()]

ML YRIUWD 8= a0y L= FET VP A Ay WLLELAL RASLI WS PIUALN VY e FGiuhe LR S

The values i> N9/2 do not need special treatment because by virtue of symmetry
properties (11) and (12) in the case of even g the spectra of the operator h(®}} for
i=j and for i= N%~j are identical.

Let i < »,. In this case the submatrix H'" yields i linearly independent eigenfunc-
tions CIV A=1,2,...,iand i eigenvalues E{". As in the previous section, we obtain
that the functions PACYY PECIY and PFCYY are non-vanishing and linearly
independent. Since the operators P' commutate with the Hamiltonian, then each of
the functions P'C4", I'= A, E, F is the eigenfunction of the Hamiltonian h(@©})
corresponding to the eigenvalue E{". Thus, each of the eigenvalues E (1) of the submatrix
H'" turns out to be a crossing of three terms with symmetries A, E and F, so that the
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total multiplicity of degeneracy in the triple points A+ E+ F is 1+2+3=6. So, if the
parameter 6 of the Hamiltonian (5) takes on the values @ = @, where @, are the roots
of (10) for K;=4(nuax—i+1)+q,i=1,2,...,v4, g=0, 2, then i triple points of the
type A+ E + F occur in the spectrum of the Hamiltonian (5).

Let »4 <i< vz A slight modification of the above reasoning brings us to the result
that, in this case, each of i eigenvalues EY’, A=1,2,...,i, of the submatrix H I
appears to be a crossing of terms of the type E and F, while only », of these eigenvalues
are actually triple points of the type A+ E + F. So, if the parameter # of the Hamiltonian
(5) takes on the values © = ®;, where @}, are the roots of (10) for K; = 4(np—i+1)+g,
i=pa+1, va+2,..., v, g=0, 2, then the spectrum of the Hamiltonian (5) comprises
v,4 triple points of the type A+ E+ F, and i — v, double points of the type E+ F.

Let v >i The submatrix H‘” is an N x N matrix with i= N, We have
NV = NY/2= (vp + vg + v4)/2, while v = v+ vs. So, N < v, and we are actually
studying the case vg<i<vp. Thus, if E{", A=1,2,..., i are eigenvalues of the
submatrix H‘V, then each of the terms with energies E = E“’ A=1,2,...,1i contains
a compoenent with symmetry F, but only v, (»z) of these terms contain a component
with symmetry A (E). It should be remembered that each of the terms with energies
E=E{" Xx=1,2,...,iis at least two-fold degenerate due to the equivalence of the
spectra of the submatrices H'" and H'¥ i.e. each of the terms is at least a double point.

Now examme the spectrum of the elgenvalues E® a=1,2,...,N? of the
NP x N® submatrix H'¥. Remember that N%' = vp+ ve + vA—zr krom the expllclt
form of the operators P and P*z (see (8)), it is seen that the functions PF|gn),
ne[—n+1—gq/2, n,—1] are orthogonal to the functions P*|q, n), n € [n;, Am.]. Hence,
among the terms with energies E=E®, A=1,2,..., N there are only v7 —i terms
E'3) with symmetry F; all the terms E8) D do not degenerate with the eigenvalues E{"
of the submatrices H” and H®. The remaining NP~ po+i=ypg+p,—iterms with

TU2) fon Al cipem o st e I s (1)

energies E =L are of symmetry A or E and degenerate with the ejgenvaiues E;

Table 2. Double and triple points in the spectrum of the Hamiltonian (5). {¢) The spectrum
of the matrix $7 at special points @ =0, for =1 or g=3. (b) The spectrum of the
matrix $7 at special points © =®L for g=0 (terms A,, E, and F,} and Q=2 (terms A,,

E, and F,).

(a)
Number of
non-crossing terms
Number of double points
i Fi+F F, F,
Ja et PR Y M FYRP— [T yp—
imin{re, vg) v i e =i
()
Number of Number of
double points non-crossing terms

Number of triple
i poinis A“fE+F  A+F E+F A E F
i<, i — — Pa—1i vg—1i Ve =i
va—i Sy, Va — i—va — v —i ve—i

ve <i<vp vt vy —i i—vg i—vy — — Ve —i
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of the submatrices H'" and H'®. Therefore, v+ v, —1I eigenvalues of each of the
submatrices H'", H® and H™ are the same, i.e. vg + va—~i eigenvalues of the initial
matrix $? are triply degenerate. This means that the spectrum of the Hamiltonian
h(®}) comprises vg + v, — i triple points of the only possible type A+ E + F. Besides,
i—(vg+wa—i)=2i—vgp—v, terms with energies E=E\" are double points of the
type of F+ A or F+ E. Since vz +v4—i terms with symmetry A are included in the
triple points, the spectrum comprises v, —(vg tv4—i)=i—v: double points of
the type F+ A and i — v, double points of the type F+ E,

~ So, if the parameter € of the Hamiltonian (5) takes on the values © =G);,, where
@, are the roots of (10) for Ki=4(Apa—i+1)+g, i=vg+1, v +2,..., v ¢=0, 2,
then the spectrum of the Hamiltonian (5) comprises vg + w4 —i triple points of the
type A+ E + F, i — vz double points of the type A+ F, and i — v, double points of the
type E+ F.

4=32 K, =21
K=d-3,1-7,. .
—f
16 +
14 +
1z 4
F
2wt £
T
=}
'E' 8+
.:::’
S
2 et 7
&
a
& LT
z¢ e L Tl e
a4
—A
_2m—
—h 2
AR A
bt
64 — Fsr, E——fitFe
[ 1+ I3
, F b F
-8+ } IF‘\*FE ‘I ‘IF;’ 2

Figure 1. The spectrum of the levels of the matrix $7 at g =1, J =32 at the special point
a=0', i =3, which corresponds 1o K, =21. To the left is the energy spectrum of the
submatrix H*"; 10 the right is the energy spectrum of the submatrix H'®, Each of the
levels is labelled with its symmetry, Since some of the levels of a given submatrix are close
to each other, by virtue of the cluster structure of the spectrum, each of the levels presented
is shifted slightly to the right with respect to the nearest-neighbouring high-lying level to
avoid their merging.
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Figure 2. The spectrum of the levels of the matrix $7 at g =0, J =32 at the special peint
0= @)', i =5, which corresponds to K, =16. To the left, middle and right are the energy
spectra of the submatrices HY, H® and H'®, respectively. The remaining designations
are the same as in figure 1. At J =32 we have v, =3, vy, =8, vp =6, ie. v, <i< v and
the spectrum comprises three triple points of the type A, + E + F, and two double points
of the type E+ F;.

Table 2 summarizes the results of our analysis of the double and triple points of
the Hamiltonian (5). Note that the total multiplicity of degeneration of levels is six at
the triple points A+ E + F, six at the double points F, + F;, five at the double points
E + F, and four at the double points A+ F. Figures 1 and 2 show some examples of

the spectra of eigenvalues of the matrices £7 at the special values of the parameter
0=8:.

6. Discussion

We have established that simultaneous crossings of terms occur at several different
energies at the special points @ =8’ in the spectrum of the Hamiltonian (5}. The
degeneration of terms belonging to different itreps D', D'2,. .., D" of the symmetry
group G of a quantum system is usually accounted for by the actual higher symmetry
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%> G of the Hamiltonian H, so that the space of representations D™+ D'2+__ .+ D':
reducible with respect to the group G proves to be irreducible with respect to the
group %

Judd (1957) has demonstrated that a linear combination of the rank-six invariants
of the cubic group may possess icosahedral symmetry Y. However, the group Y
possesses irreps of dimensions one, three, three, four and five, and cannot be responsible
for the six-fold degeneration of levels forming triple or double points. The Hamiltonian
h(©) at special values of the parameter ® = @' may have been expected to be symmetric
with respect to some point group ¥ in the four-dimensional space or in a space of a
higher dimension, for example with respect to the symmetry group of a four-dimensionai
cube. However, the symmetry with respect to the multidimensional point group >0
should give rise to degeneration of not only one or several terms of the type 7=
A,+ E + F, belonging to the irrep D’ of the group %, but also to a simultaneous
degeneration of all the triplets of terms A,, E and F; forming other levels with symmetry
7 of the Hamiltonian h(®'). Besides, degeneration of terms forming other irreps D™,
D™, ... of the group ¥ should be also expected at the same value of ® =@’ Indeed,
the degeneration of terms of the types 7= A,+ E+ F, and 7" = F,+ F, are observed
in the spectrum, but at other values of the parameter ®=0" and 8 =0""

Tt should be noted that the number N of the values of the parameter @ =0",
®% ..., ®" at which the spectrum of the operator h(©') comprises triple or double
points is sufficiently large (N ~J). Had the double and triple points been relevant to
the existence of a multidimensional symmetry group %' of the Hamiltonian h{®) for
©=0"i=1,2,..., N, the symmetry group ' should have been replaced consecutively
by groups %", ¥ ... for @=0™, ®"% .. .. Such a number of high-symmetry
groups for the Hamiltonian A(®) seems unlikely. Therefore, the accidental degeneracy
of the spectrum of the Hamiltonian (5) in the form of double and triple points is most
probably irrelevant to increasing symmetry of the Hamiltonian.

If J>cc, then for sufficiently large values of |K| we have |Dux /D ks >0 (see
Harter and Patterson 1977, 1979, Zhilinskii 1979). So, in the classical limit J - oo, we
may neglect non-diagonal matrix elements £ g ., with sufficiently large values of | K|
in (6) and interpret the degeneration of the six-fold clusters in the limit as the formation
of the double and triple points of the type F,+ F, and A+ E -+ F, respectively. In the
general quantum case, the six-fold clusters are non-degenerate, but as a reflection of
the classical degeneration the exact accidental degeneracy occurs at special values of
the parameter © =@’ The larger is the value of J the more often the accidental
degeneracy occurs and, in the classical limit J - o, ali the values of the parameter ©
give rise to the occurrence of double and triple points.

Note, that the ‘number-theoretic’ accidental degeneracy discussed by Berry and
Wilkinson (1984) and by Diri and Moshinsky (1985) exhibits the same tendency in
the classical limit.

In experimental studies of rotational spectra of cubic-symmetry molecules, double
and triple points should manifest themselves as an anomalously low splitting of some
of the six-fold clusters at the values of @ close to one of the special points @' prescribed
by {10) and, also, as an anomalously low splitting between a pair or a triplet of levels
forming some of the eight- or 12-fold clusters if the value of @' is sufficiently large.
Obviously, the parameter © is a constant characterizing a given particular molecule
and does not depend (or depends little) on the total angular momentum J. At the same
time, for sufficiently large values of J, (J|[t*| 3/ (J || |y~ T (J +1), thus, from (10) we
obtain tan @° ~[J{J+1)]7, i.e. the positions of the special points ®' are different for
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different values of J. Therefore, the anomalously low splitting of levels due to the
occurrence of double or triple points in the spectrum should be observed only at some
values of J, rather than at any value of J. So, by increasing the angular momentum J,
we may attain the situation where the value of the parameter @ will successively
approach the special points 8, 8! @2 . so that the number of double and/or
triple points in the spectrum will be different at each new value J,, J..,, Ji42,. ... From
the quasiclassical estimates (Harter and Patterson 1977, 1979, Braun et al 1985) it
follows that the splitting of the levels in a cluster decrease smoothly with increasing
of J. The occurrence of double and triple points in the spectrum will result in a sudden
pronounced decrease of the splitting of N, triplets of levels F), A, and E at a certain
value of J=J,, of N, pairs of levels F, and F, at J=J,>J,, of N, triplets of levels
F,, Ayand E at J =J, > J,, of N, pairs of levels F, and F; at J,> J;, of N,+1 triplets
of levels Fi, A,and E at J=J,> J,, etc.

It should be pointed out that the accidental degeneracy is the general property
essential to any system pertaining to cubic symmetry, and the double and triple points
should be observed not only in the rotational spectra of cubic-symmetry molecules,
but in the spectra of an impurity ion in a crystal field as well. In studying the spectra
of an impurity ion, half-integer values of J are actual, too. All the above treatment
may be generalized to the case of the half-integer J. As the result we obtain that the
double points of the type E'+ G or E"+ G with the total six-fold degeneracy occur
in the spectrum at special points ® = @', For details see the paper of Sviridov et al (1991).

In parallel with studying the double and triple points in the spectrum of the
cubic-symmetry Hamiltonian (5), we constructed.the basis of irreps D' (I'=A,, A,,
E, F,, F,) of the group O in the subspace of irrep D’ of the SO(3) group. Summarizing
conclusions (1a), (ib}, (1¢) and (1d) we may formulate: '

Theorem 1. All the functions PI‘|q, Moax T 1—1), where i=1,2,..., v, I'=A,, A,, E,
F,, F,, and g takes on any value compatible with a given symmetry I', are non-vanishing
and linearly independent, i.e. they form the basis of irreps D" of the group O in the
space of irreps D’ of the SO(3} group.

Theorem 2. All the functions P'|q, nyun—1+i), where i=1,2,..., v, [=A,, A,, E,
F,, F,, and g takes on any value compatible with a given symmetry I', are non-vanishing
and linearly independent, i.e. they form the basis of irreps D' of the group O in the
space of irreps D’ of the SO(3) group.

Nearly the same basis has been proposed by Cheglokov and Ulenikov {1985), but
they have not proved the linear independence of the basis functions. Theorems t and
2 may be generalized for the case of the double cubic group O’ and half-integer values
of J (Sviridov et al 1991).

From the explicit form of the projection operators (8) and with relation P P¥ = P¥
it is seen that the basis functions P'|g, #) with n=rn_,,, Pnax—1, ., B — #r+1
{(n=r,in, Mint 1,..., Amintor-—1) and I'=F, or I'= F, for g=0, 2 are mutually
orthogonal. Nevertheless, all the other basis functions of the type P'|q, n) are not
orthogonal. The most natural orthogonalization procedure seems to be the diagonal-
ization of the operator T, in the given basis with a view to using its eigenfunctions as
an orthogonal basis. The commutativity of the operators P" and T, may readily be
used to reduce the orthogonalization of the basis to the diagonalization of tridiagonal
v X yp matrices.
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In conclusion, it should be noted that the methods based on the properties of
eigenvalues and eigenfunctions at different values of the parameter © of the operator
invariant with respect to a given group were probably not used earlier to construct the
bases of irreps of the groups. Nevertheless, the method may prove to be useful in some
problems, for example in the problem of constructing the basis for the SU(3) group
in the Elliot scheme, if the operators T, and T, are replaced by the operators )
{Bargman and Moshinsky 1961) and )’ (Judd er al 1974).
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