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used frequently in applications, which is a linear combination of spherical tensors of rank 
n S 6  invariant with respect to transformations of a cubic group. The degeneracy arises 
only at definite values of the Hamiltonian parameten and seems to be irrelevant with 
respect to increasing Hamiltonian symmetry. The basis of irreducible representations D' 
of the cubic group is constructed in the space of irreducible representations D' of the 
SO(;)  group. 

" " ~  ..... 17 -. ._."._ ." "._"._" ... ..._ "r --.. "... -. ...- ...... _. 

1. Introduction 

The degeneracy of levels in the spectrum of any Hamiltonian is usually considered to 
be related to its symmetry with respect to some group G. However, Moshinsky and 
Quesne (1983), Berry and Wilkinson (1984), Dirl and Moshinsky (1985) and Siddall 
and Sullivan (1988) have treated a number of instances where the level degeneracy 
appeared t o  be irrelevant to the occurrence of a symmetry group for a Hamiltonian. 
Any consistent theory for the given type of phenomena has not been constructed yet. 

Below we examine in detail the term crossing in the spectrum of the cubic-symmetry 
Hamiltonian of the following type used frequently in applications: 

H = a , T , + a , T , i a , T , .  (1) 

The term crossing gives rise to an accidental degeneracy of eigenvalues which seems 
not to be associated with increasing Hamiltonian symmetry and, therefore, presents 
another example of 'degeneracy without symmetry'. The rank-n tensor operators T, 
in (1) are invariants of one of the cubic groups (for definiteness, we shall treat the 
octahedral group 0). They are of the form 

2 -  o - J  2 -  - J , + J : i J :  2 

T4= Gt:+G( t:+ t") (2) 
r6=&-fl(t:+t64). 

Here we have chosen the axis of quantization to be the four-fold symmetry axis of the 
octahedral group. The matrices of tensor operators t ;  on the basis of functions 
IJM) = YJM ( - J s  M S J )  labelled by angular momentum J and its projection M may 
be easily calculated using the Wigner-Eckart theorem 
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where 
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(i, 2 a 
is the Wigner 3-j coefficient, and the reduced matrix elements (Jllr"l(J) which do not 
depend on M or M' may be included into the phenomenological constants a2,  a4 and 
a6 of the Hamiltonian ( I ) .  

Hamiltonians of type (1) are used to describe the spectra of impurity ions in a 
crystai field of cubic symmetry (see, for exampie, Sviridov and Smirnov 1977). In this 
case, the ion term EI with angular momentum J splits into a number of levels Ej , -J  
labelled by symbol r of irreducible representations (irreps) Dr of the group 0 entering 
the expansion 

D' =x y.Dr (4) 
I 

where D' are irreps of the SU(2) group and ur are multiplicities of the irreps D'. The 
energies E,,, are usually calculated by diagonalizing the matrix of the operator (1) on 
the basis of functions YIM. 

The Hamiltonian (1) is used also to describe the rotational spectra of the non-rigid 
cubic-symmetry molecules (Hecht 1960, Moret-Bailly 1961, 1965). In  this case the 
energies of rotational levels EirJ are calculated by diagonalizing the matrix of the 
Hamiltonian on the basis of the symmetrical-top eigenfunctions IJMK) = 
J ( 2 J +  1)/8m2 D<,(aPy). However, the matrix of effective rotational Hamiltonian 
(l) ,  allowingfor theeffects of non-rigidity ofa  molecule, on the basis of the symmetrical- 
top eigenfunctions IJMK), coincides with the matrix of the Hamiltonian of an impurity 
ion in a crystal field on the basis of the functions YJM. Therefore, the two problems 
may be treated in parallel. Below we shall mainly discuss the rotational spectra of 
cubic-symmetry moiecuies, but aii resuits may be easiiy reinterpreted in terms o i  the 
spectra of impurity ions in the crystal field. 

Studying the rotational spectra of cubic-symmetry molecules is of particular interest 
because states with very high values of angular momentum ( J  - 100) are observed 
experimentally. In this case the eigenvalues of the operator (1) with a given value of 
J are grouped into close and almost degenerate six- and eight-fold clusters (Dorney 
and Watson 1972, Harter and Patterson 1977, 1979, Fox et a /  1977, Zhilinskii 1979, 
Braun er a /  1985) and, for some particular choices of the Hamiltonian parameters, 
12-fold level clusters are also formed in the spectrum. 

The visual geometrical explanation of the level clustering phenomenon (Harter and 
Patterson 1977) suggests that levels forming a cluster have an identical physical origin 
and correspond to rotation of a molecule about n-fold symmetry axes C.. The 

ing levels. So, the six-fold clusters, for example, are formed by degenerate levels 
corresponding to molecular rotations about three four-fold symmetry axes C4 (allowing 
for the two feasible directions of rotation about each of the axes), while the eight-fold 
clusters are formed by levels corresponding to rotations about four three-fold symmetry 
axes C, and the 12-fold clusters are connected with rotations about six two-fold 

In the classical limit J +CO, the levels forming a cluster are strictly degenerate. 
Nevertheless, the clusters split due to the quantum tunnel effect which causes the 
coupling between rotations about different equivalent symmetry axes. In this case, 
obviously, each of the levels may be labelled by irreps Dl' of the group 0. Thus, the 

equ~vdience ofsYmmeiw axes ofihe sBme C" &generacy ofihi: coiiespon;. 

"..--et̂.. ^_^^ c 
Jy"'L1LcLLy L l h S J  - 2 .  
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clusters have the structure r ,+r 2 . . . + r K ,  i.e. they are formed by K close levels 
corresponding to the irreps D'l, Drz, , D"K of the group 0. Of course, each level 
pertaining to symmetry r is rigorously degenerate and the multiplicity of degeneration 
is equal to the dimension dim r of the irrep Dr. So, for example, six-fold clusters are 
either of the type F, + F2 (two close triplets pertaining to symmetry F, and F,) or 
A, + E + F, (A, + E + F2) (three close levels: non-degenerate pertaining to symmetry 
A ,  (A2) ,  doublet E and triplet F, ( F , ) ) .  

I t  should be bome in mind that the operator T2 = J 2  entering (1) fails to give rise 
to the splitting of levels with the same value of J due to the effects of the non-rigidity 
of a molecule, and defines only the 'centre of gravity' position of the terms characterized 
by a certain value of the angular momentum J. Therefore, in the study of the structure 
of rotational spectra characterized by a given value of J, i.e. in the study of the level 
clustering phenomenon and of the crossing of levels comprising the above-mentioned 
spectra, it is of interest to examine only the a.T.-type terms with n 2 4  in (1). So, we 
shall operate with the effective rotational Hamiltonian 

(5) h ( 0 )  = T4 cos O +  T6sin 0 
where the parameter 8 defines the relative weights of the tensor operators T4 and T6. 

Lea et a1 (1962), Harter and Patterson (1979) and Braun et al (1986)  examined the 
dependence of the eigenvalues E,,, of the operator ( 5 )  on the parameter 8. From their 
numerical calculations, Lea et a1 (1962) inferred a simultaneous crossing of three 
terms, A, ,  E, F, (or A,, E, F,), at a single point at certain values 0 = 8,. Harter and 
Patterson (1979) called these points the triple points and analysed them in terms of 
an approximate asymptotic theory. At certain values 8 = Od, the crossing of two terms 
F, and F2 occurs also at  a definite point. We shall call points of the latter type double 
points. 

Below, we shall examine the double and triple points in the spectrum of the 
Hamiltonian (5) in terms of an accurate algebraic approach. We shall demonstrate 
that the occurrence of double and triple points in the spectrum of the Hamiltonian 
(5) is quite natural and exhibits a regular behaviour. We shall rigorously prove that 
at definite values 0 = e', i = 1,2, . . . ,in the general case, the spectrum of the Hamiltonian 
(5) contains several triple and/or double points, rather than a single point, i.e. several 
triplets and/or pairs of degenerate terms, rather than a singie tripiet or pair, are present 
in the spectrum at several different values of energy. 

The double and triple points manifest themselves in the strict degeneration of some 
of the six-fold clusters and/or in the strict degeneration of a pair or triplet of levels 
entering an eight- or 12-fold cluster. Note that the double and triple points may occur 
in the spectra of levels with sufficiently small values of J, when the clusters are not 
weii formed. Tne ievel crossing associaied wiih ihe doubie and iripie p h i s  originates 
from the octahedral symmetry of the problem, and arises naturally for the spectra of 
impurity ions in  the crystal field as well as for the rotational spectra of cubic-symmetry 
molecules. 

We make use of the algebraic methods associated closely with constructing the 
basis of irreps D" of the group 0 in the space of irreps D' of the SO(3) group. In 
parallrr W l l l l  sruuyrng LllC U"""IS a11u U1pK putrrrs U1 LllC L."UIb "dlll l l l"I11a_11, wc >,,a,, 
construct the complete set of cubic harmonics .U:;. The set appears to be nearly the 
same as the one proposed by Cheglokov and Ulenikov (1985). Note that these authors 
have not given the full proof of the linear independence of the basis functions, and 
our study closes the problem. 

... I , . ,  ...:.L .....I_. :__ .L^ >-..L,- ....A *-:-I" --:...- F̂.L̂  -..I.:,. ""-.:,.,...:".. ^L.,* 
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The paper is organized as follows. In section 2 we discuss some properties of 
effective Hamiltonian (9, write down projection operators, formulate lemmas and 
introduce notations that are used afterwards. Section 3 treats a simple example which 
visualizes the physical origin of double and triple points. The algebraic treatment of 
double and triple points in the general case is presented in sections 4 and 5 .  A discussion 
of the results is presented in section 6. 

2. Term crossing in the spectrum of the effective rotational Hamiltonian 

From the explicit form (2) of the operators T4 and T6 it is seen that the matrix @ of 
the Hamiltonian ( 5 )  in the basis of the functions IJMK) = IJK) is tridiagonal, i.e. only 
thematrix e lement sS jKK1~(JKIh(B) lJK' ) - (JMKIh(B)IJMK')  with K ' = K ,  K 1 4 a r e  
non-vanishing. The eigenvalue problem for the Hamiltonian ( 5 )  is of the form 

( 6 )  
Obviously, the set of equations (6) may be broken into four independent subsets 

characterized by a particular value of q = K mod 4, i.e. the matrix @ of the Hamiltonian 
h ( B )  may be decomposed into a direct sum of the type Sj  =Qo04'04'0Q3, where 
the matrices Sj" with matrix elements Sj:..=(J,4n+qlh(B)IJ,4n'+q), q = O ,  1, 2, 3, 
are tridiagonal, and the non-vanishing matrix elements are the ones with n = n', 
n'+ 1. Thus, we actually meet the problem of diagonalizing four Hermitian tridiagonal 
matrices .Qq. 

The eigenfunctions CA-@: of the Hamiltonian h ( 0 )  are linear combinations of 
the basis functions Iqn)=IJ, 4n + 4): C: = Xn C*,lqn), and the coefficients C^. are com- 
ponents of the eigenvectors {CA}= {C i }  of the matrices Q9. In what follows we shall 
denote by nmax (nmJ the maximal (minimal) possible value of the index n of the hasis 
functions Iqn), and by K:,, = 4n,,,+ q (KZi. = 4n,,,+ q )  the maximal (minimal) 
possible value of the projection K of angular momentum on the internal molecular 
frame fixed to a rotor for given values of J and q. N q  = nm,,- n,,,+ 1 is, obviously, 
the dimension of the Hilbert space spanned by the functions Iqn),  and the matrices 
6" are N' x N" matrices. 

The eigenfunctions C A  of the Hamiltonian ( 5 )  may be labelled by the irreps D'. of 
the group 0. The discrimination of the eigenfunctions CrA belonging to the irrep D'' 
of the group 0 may be done using the projection operators 

4 K.K -4Ck -4 + ( 4 K K  - E A )  Ck + Q K , K  +4Ck t4 = 0. 

(7) 

where g is an element (rotation) of the group 0 , D ( g )  is the corresponding operator, 
and x , - ( g )  is the character of the element g in the irrep Dl'. Using (7) it is straightforward 
to obtain matrix elements PLK.=(JKIPrIJK') of the operators Pr on the IJK) basis: 

dim r 
pr=- 1 Xr(g)D(g) 

24 g 

P ~ K , = ~ ~ O . K ~ ~ ~ ~ [ S K K ' + ( - ~ ) ~ ~ K . - K ' + ~ ( ~ K K ' ]  

p",., =;82.K m o d 4 [ 8 K K ' +  (-1) 6 K.-K'-2(9 K K ' I  
I 

P E K ,  = m.d2[8KK.+ (-l)JLSK.& - ( -1  ) K ' 2 S K K . I  ( 8 )  

P ~ K ,  = $ [ 8 K K ' ( l  - 8 2 , K  m o d 4 1  - ( - 1 l J 8  K. -K 'sO.K  "odd+ 8 I . K  m o d 2 S  K K ' I  

P ~ K . = $ [ ~ K K ' ( I  - 8 O . K  mod4)  -(-I) 8 K , - K ' 8 2 , K  m o d 4 - 8 1 , K m o d 2 ~ K K ' l  
J 

where 'SIKK.=2S0,(K-K.)mod4dlKK.(~/2)r and d:,,,(P) is the Wigner d-function. 
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The matrices of projection operators P' are seen from (8) to be diagonal with 
respect to the index 9 = K mod4. Thus, the eigenfunctions 02: and respective eigen- 
values E! ,  obtained by diagonalizing the matrices @.", may be labelled by the index r 
of the irreps Dr of the group 0. The set of irreps D' realizable in the Hilbert space 
spanned by the functions I9n) with a given value of 9 may be easily determined from 
(8). The results are summarized in table 1. 

Table 1. lrreps Dr of the group 0 compatible with a given value of q = K mod 4 

q =  K m o d 4  0 1 2 3 

Note, that if the irrep D'. is compatible with a given value of 9, then among the 
eigenfunctions @: there should be found ur eigenfunctions e:, pertaining to symmetry 
r, and the dimension of the matrix aq, N q  =.X, Y,., where the summation is assumed 
over all r compatible with a given value of 9. The two-fold degeneracy of the eigen- 
values of the matrix @ pertaining to symmetry E and three-fold degeneracy of the 
eigenvalues of the same matrix pertaining to symmetries F ,  and F2 results from the 
coincidence of eigenvalues E &  and E?, of different matrices Dq and Qq' pertaining 
to the same symmetry r ( = E ,  F, or  Fz).  Nevertheless, the set of eigenvalues EFA 
pertaining to a given symmetry r of any matrix 4' is non-degenerate. At the same 
time, the occurrence of double points of the type F, + F2 and of triple points of the 
type A, + E  + Fl or A,+ E + F2 is associated with the degeneration of levels pertaining 
to different symmetries r and r', and, as seen from table 1, is associated with degener- 
ation of a number of eigenvalues of one of the matrices 4'. 

Now let us present two lemmas (Voevodin and Kuznetsov 1984) concerning the 
general properties of eigenvalues E A ,  eigenvectors (CA) and respective eigenfunctions 
@ , = E .  C:ln)  of the Hermitian tridiagonal matrices B. All the non-diagonal matrix 
elements Bn,"*, are assumed to be non-zero: B ,,"+, # 0. 

Lemma 1. All the eigenvalues EA are non-degenerate. 

Lemma 2. The extreme components of any of the eigenvectors {CA) are non-zero, i.e. 
CkmaX # 0 and Ct-," # 0, while all the eigenfunctions functions CA enter the decomposi- 
tion of the extreme basis functions 

(9) - *  
Inmaxcmf",) = z cfl","z<m,",cA 

with coefficients etmax,m,n, # 0. 

From lemma 1 it follows immediately that, if all the non-diagonal matrix elements 
of the effective Hamiltonian aKK.K14=(JK/h(0)l-l ,  K i 4 ) # 0 ,  the spectrum of the 
eigenvalues of any matrix aq is non-degenerate. Thus, the formation of double and 
triple points is associated with vanishing of non-diagonal matrix elements of the 
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operator (5) at certain values of the parameter 0 = 01, 02,.  . . , which may be found 
from the equation 

A M Shirokov and Yu F Smirnov 

cos 0'(JK,I TJJK, - 4) +sin O'(JK,IT,[JKj - 4) = 0. (10) 

The solutions @'-Ob for (10) are specified below by values of K i  at the fixed 
value of 9 = Kj mod 4, i.e. the index i labelling the special points 0 = 0' = 0; is to be 
found from the equation Ki = 4ni + 9 = 4(n,,,+ 1 - i )  + 9, i = I ,  2,. . . . Due to the sym- 
metry properties of the matrix @> 

@ K K , =  @ W K  = @ - K , - K , =  ~ - K , , - K  (11) 

which may be easily obtained from (2), (3) and (9, it is sufficient to treat only the 
&values belonging to the interval 2 < K,  5 J. It will be shown that each of the solutions 
0' for (10) is in correspondence with the occurrence of double and/or triple points 
in the spectrum. 

From (IO) and (11) it follows that at each special point 0 =Ob, i = 1.2, .  . . , four 
non-diagonal matrix elements of the matrix @ vanish simultaneously: 

@ K , . K , - - ~ =  4 K , - ~ , K ,  = @ - K , + ~ , - K ,  = @ - K , , - K , + ~  = 0 (12) 

(except for the case Kt = 2, when only two non-diagonal matrix elements = @32,2 = 
0). Thus, if q is even, than at the special point 0 = @ a  the matrix $9 appears to be of 
a block-diagonal structure and may be decomposed into the direct sum of the type 
@' = H'"@ H'2'@H(3' ,  The matrices H"' are N"'x N"'matrices, where N"'= N i 3 ' =  
i and N"'= N' -2i, and the indices n and n' labelling the matrix elements HYi,, H'.S1. 
and HLI', belong to the intervals Ini, n,J, [-a, + 1 -4/2, nj - I ]  and [n,;", -nj -9/2], 
respectively. The matrices Hi" are, obviously, tridiagonal. Moreover, due to ( 1  l ) ,  
matrices H"' and Hi3'  are identical. 

If 9 is odd, then@j4 = H"'OHi2 '  at special points 0 =e;, where H"' are tridiagonal 
N"'x N"' matrices with N"'= i and N"'= N 4  - i. The indices n and n' labelling the 
matrix elements HY?, and belong to the intervals [ n i ,  nmax] and [nmj., nj -11, 
respectively. 

In studying double and triple points we are interested only in the spectra of 
submatrices &i4 that have a block-diagonal structure due to the vanishing of non- 
diagonal matrix elements at special points 0 = 0;. If 9 is even, then @' is the only 
block-diagonal submatrix of the matrix a. If 9 is odd, then two submatrices @' and 
Q' are block-diagonal but, because of ( l l ) ,  the submatrices @' and Q3 are identical. 
So, for any 9 it is sufficient to study only the spectrum of the submatrix Qq at the 
special point 0 = 0;. 

3. A simple example 

In order to show the physical origin of the accidental degeneracy in the spectra of the 
Hamiltonian (9, let us discuss a simple example. 

Suppose J = 4. In the case 9 = 1, @"I is a 2 x 2 matrix. I t  has two eigenvalues E F, 
and E F ,  pertaining to the symmetries F, and F2, respectively. For each of the symmetries 
F,  and F2 there is the unique cubic harmonic 'P:=l,J=4 (Sviridov and Smirnov 1977): 
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are, obviously, the eigenfunctions of the Hamiltonian ( 5 )  
at any value of the parameter 0. The function / q  = 1,O) is seen from (13) to be a linear 
combination of the functions \ Y ~ L , , ~ = ~  and \Yq:,, ,=4. Nevertheless, if @ =  @bL'l, then 
the matrix aq=' is diagonal and the function 1q = 1,O) is an eigenfunction of the 
Hamiltonian ( 5 ) .  This is possible if only the terms E F ,  and E, are degenerate. Thus, 
a double point of the type F, + F2 occurs in the spectrum of the effective Hamiltonian 
( 5 )  when 0 attains the value Ob=,. 

Now let us discuss the case q = 0. For each of the symmetries A, ,  E and F, there 
is also the unique cubic harmonic 

The functions 

F 

(Sviridov and Smirnov 1977): 

4 [Iq =o, l ) + / q  =o, - 1 ) 3 + 4  1q =o, 0) 

vq=a.J=a= 4 [Iq =o, l ) + / q  =o, - 1 ) 1 - 4  1q =o, 0) 

v,L,,,_,=V%[lq F 

(14) E 

= 0, l ) - / q  =o, -l)]. 

The 3 x 3 matrix 51"' has three eigenvalues E A , ,  E, and E F , ,  and at any value 
= lyr u = o . ~ = 4 ,  r = A , ,  E, FI. of the parameter 0 the corresponding eigenfunctions 

If 0=0!,=,, then the matrix a,'=' appears to be diagonal, and the functions 

are the eigenfunctions of the Hamiltonian ( 5 ) ,  too. This is possible if only EA, = EE = 
EF, .  Thus, if 0 = then a triple point of the type A,  + E  + F, is present in the 
spectrum. Note that all the functions (15) correspond to the same energy. 

It is seen that the occurrence of double and triple points in the spectrum at special 
values of the parameter 0 = 0; is a direct consequence of two factors: (i) one of the 
submatrices a'' is block-diagonal (in our example, diagonal) if 0 = 0;; (ii) the extreme 
basis function Iqn,,,) is a linear combination of all cubic harmonics V:,, 

Iqn,.,)=I: mr.Iy:, (16) 

where the summation is assumed over all r compatible with a given value of q. In our 
example, (16) has been verified using the explicit expressions for the cubic harmonics 
Y:J (13) and (14), which hold for any value of the parameter 0. In the general case, 
the analogous expressions will be verified using the properties of eigenvalues and 
eigenvectors of the matrices aq at different values of the parameter 0 and lemmas 1 
and 2. From (16) it follows that, for any r compatible with a given value of q, the 
functions Prlqn,,,) are non-vanishing and proportional to the respective cubic har- 
monics V:J. Thus, our study of the double and triple points is in close correspondence 
with the construction of the cubic harmonics of the type Prlqn).  

1. 

4. Double points of the type F, + F2 

In this section we discuss the spectrum of the matrix @" at special points @ =0: for 
the case of odd q. 

First of all we shall show that (16) holds for any J a 3 ,  when v F ,  S 1 and v F , a  1 .  
The matrix sjq  yields v F ,  eigenfunctions e>,, belonging to the irrep DFl and vF2 
eigenfunctions e>*, belonging to the irrep DF2. If 0 is not equal to any solution 0' 
of ( l o ) ,  then by virtue of (9), the extreme basis function Iqn,,,) is a linear combination 
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of all eigenfunctions C:,,, and @&. Thus, Iqn,.,) is a superposition of functions @k, 
and @b2 belonging to the irreps DFl and DF2, respectively: Iqn,,,,,) where 
@k, = PF1lqn,,,) 9 0 and @k2 = PF21qn,.,) 9 0. This result surely holds for any value 
of 0. 

Now let 0 = 0; and i = 1. In this case the submatrix H”’ is a 1 x 1 matrix. The 
function 19, nmmJ is a single eigenfunction of this matrix and, hence, of the Hamiltonian 
h ( 0 : ) .  The respective eigenvalue will be denoted as E\’). In complete analogy to the 
example in section 3, we conclude that a double point of the type F, + F2 occurs in 
the spectrum at energy E = E:’’ for 0 = 0:. 

The suhmatrix H‘2’ has N‘”= U,,+ vF2-  1 non-degenerate eigenvalues E‘,2’. The 
eigenvalue E$” of the matrix a‘‘ is doubly degenerate, so among eigenvalues E:” of 
the suhmatrix H‘2’ there is the one equal to E!’): E\”= E\”. The respective eigenfunc- 
tion is a linear combination of the functions @;, and @k2 (note that the projectors 
Pr  commutate with the Hamiltonian h ( O ) ,  which is invariant with respect to transfor- 
mations of the group 0, so the functions @k,=PF‘lqn,,, , ,) and @k,=PF’lqn,.,) are 
also eigenfunctions of the Hamiltonian (5) corresponding to the same eigenenergy 
E!’)). From the orthogonality of @?”’ to I9n,,,) it follows that C?‘2)=(@k,l@k,)@$z- 

All the remaining vF, - 1 eigenfunctions Cg;’ and vFz - 1 eigenfunctions @%I of 
the submatrix H‘” pertain to the symmetries F ,  and F2,  respectively. Since 19, n,,,- 1) 
is the extreme basis function for the suhmatrix H”’, then, according to (9), it contains 
in its expansion 

A M Shirokov and Yu F Smirnoo 

(0 k p  k,)@ kl. 

”PI  “ F a  

19, nmax- l )=  b@:‘2’+ 1 b:Cg!:)+ 1 b:C4:;:‘ (17) 

all eigenfunctions CC:’ and CT; of the submatrix H‘2’ with non-zero factors 
b, b: and b:. The eigenfunctions Cg!?’, A = 2 , 3 , .  . . , vF,  and Ob, are, obviously, linearly 
independent, Therefore, if uF, 3 2, the projected function 

A - 2  A = *  

”FI 

PF1lq, n , ~ ~ - l ) = - b ( @ : ~ @ k ~ ) @ k ~ +  1 b:Cg:’ 
* = 2  

is non-vanishing and linearly independent with PF’lqn,,,) = @k, . Similarly, if uF2> 2, 
then the function PF21q, n,,,- I )  $ 0  and is linearly independent with PFz(qn,,,).  

Now let 0 =Ob=’. The 2 x 2 matrix H“’ has two non-degenerate eigenvalues, 
E:” and EY’, and two linearly independent non-vanishing eigenfunctions, Cy’, 
and two linearly independent non-vanishing eigenfunctions, Cy‘‘’ = C~mAxlqnmax) + 
C!,mm.-,19, n,,,- 1)$0 and Cz“’= C;,m,lqnm.x)+ Ctmrx-,19, n,,,- 1) %O. Therefore, 
owing to the linear independence of the functions P‘lqn,,.) and Pl‘lq, nmar- I ) ,  the 
functions Pl‘@:(” and P‘C;‘’’ are non-vanishing: Pr@T,y’$O, r =  F , ,  F 2 .  It is clear 
that the functions P F C p ‘ ”  and PFICy‘” are eigenfunctions of the Hamiltonian ( 5 )  
corresponding to the same eigenergy E\’). Similarly, PFC3:“’ and PFC;“ ’  are eigen- 
functions of the Hamiltonian ( 5 )  corresponding to the doubly degenerate eigenvalue 
E:’). So, for 0 =Ob=‘ in the spectra of the Hamiltonian (5) there are two double points 
of the type F , + F 2  with energies E:” and E:”. 

Obviously, the functions P”@:” and P“Ci” are linearly independent and, moreover, 
are mutually orthogonal because they correspond to different eigenvalues E$” and 
E y ’  of the Hamiltonian h ( 0 ; = 2 ) .  

The submatrix H‘2’ has N * - 2  non-degenerate eigenvalues. Among them there are 
two eigenvalues, Ei2’ and E?’, degenerate with the eigenvalues E\” and EY’ of the 



Double and triple points 2969 

I - I , - . e respective eigenfunctions are linear comhi- 
nations of the functions belonging to the irreps DFi and DFz. In addition, the submatrix 

has VF, - 2  eigenvalues E?:A corresponding to the eigenfunctions e":;:) belonging 
to the irrep DF1, and w F , - 2  eigenvalues E?:A corresponding to the eigenfunctions 
C.:::) belonging to the irrep DF2. The eigenfunctions @$) and are linearly 
independent with the functions P'lqn,.,) and Prlq, nmax- l ) ,  r =  F , ,  F2. So, using 
reasoning similar to the above, we conclude that if w F , z = 3 ,  then the function 
PFllq, nmar - 2) is non-vanishing and linearly independent with the functions PFllqn,,,) 
and PF'lq, n m a x - l ) .  Similarly, if w F 2 z = 3 ,  then the function PFzlq, n,, ,-2) is non- 
vanishing and linearly independent with the functions PFzJqn,,,) and PFzlq, n,,,- 1). 

Now, we may put 0 = 0:. e:, . . . , and repeat the above reasoning almost word 
for word. As a result, the following conclusions may he drawn. 

Conclusion ( la) .  wr functions 

submatrix ff(1): E(2)  - E('!  E(') - E''! Th 

PrIJ,4n,,,+q), Pr lJ ,4(nmax- l )+q) , .  . ., PrIJ,4(n,,,- w, .+ l )+q)  

(where r = F,, F2 and q = 1,3)  are non-vanishing and linearly independent, i.e. they 
form the basis of the functions belonging to the irrep D" of the group 0 in the subspace 
spanned by the functions Iqn) with q = 1 ,  3.  

Conclusion (2a). If the parameter 0 of the Hamiltonian (5) takes on the values 0 = Ob, 
where 0; are the roots of (10) for K , = 4 ( n m , , - i + l ) + q ,  i =  1,2,  _ .  . , umin and w m i n =  
min{uF,, w F , } ,  q = 1, 3, then i double points of the type F, + F2 occur in the spectrum 
of the Hamiltonian ( 5 ) .  

Note that W ~ , + W ~ ~ = N " = ' = N ~ = ~  and l u F , - u F J s l .  So, if 0=06 and i>vmi , ,  
then the dimension N'2' of the suhmatrix H'2' is smaller than the dimension N"' of 
the suhmatrix H"),  and we may repeat the entire chain of rezsoning, starting from the 
extreme basis function IJKZ;.) = lqnmi,). 

As a result, we obtain: 

Conclusion (16). w,. functions 

~ ' ) ~ , 4 n , ; . + q ) ,  ~ ' I ~ , 4 ( n , , . + l ) + q )  , _ _ _ ,  ~ ' ) ~ , 4 ( n , , . +  w , - ~ ) + q )  

(where r = F , ,  F2 and q = 1 ,  3) are non-vanishing and linearly independent, i.e. they 
form the basis of the functions belonging to the irrep D' of the group 0 in the subspace 
spanned by the functions 1qn) with q =  1 ,  3. 

Conclusion (26). If the parameter B of the Hamiltonian (5 )  takes on the values 0 =Ob, 
where 0; are the roots of (10) for K,=4(n,, ,+i)+q, i = 1 , 2  ,..., wminr q = 1 ,  3,  then 
i double points of the type Fl + F2 occur in the spectrum of the Hamiltonian (5). 

5. Triple points of the type of A , + E + F ,  and A z + E + F z  

Examined below will he the spectrum of the suhmatrix aq at special points 0 = 0; in 
the case of even q. This case may he treated by the method presented in section 4. 
Nevertheless, some complications arise from the more complex structure of the matrix 
Qq in the case of even q. 
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It should be remembered that the matrix Qq for 0 = 0; is broken down into three 
tridiagonal submatrices: Q" = H " ' O H ' 2 ' O H ' 3 ' .  The i x  i submatrices H"' and H o ) ,  
being identical, yield identical spectra of eigenvalues E?' and respectively. At a 
special point @ = O b  we thus have i crossings of, at a minimum, two terms (double 
points). Also, some of the eigenvalues E',,' of the submatrix H"' may equal the 
eigenvalues E y )  and Ei3' of the submatrices H"' and H'". In this case, at the point 
0 =Ob we deal with the simultaneous crossing of three terms, so some (or all) of the 
double points turn into triple points. At the same time, if in the spectrum of the 
submatrix H"' there are n, terms E7.Y' pertaining to symmetry r, then the remaining 
vr-nl. terms E$' pertaining to this symmetry being non-degenerate with the terms 
E::'' should be sought in the spectrum of the submatrix H'2'. 

Bearing this in mind we may repeat almost word-for-word the reasoning of the 
previous section concerning the construction of the set of cubic harmonics. The result 
is the following. 

Conclusion ( I C ) .  vr functions 

~ " I ~ , 4 n , . , + q ) ,  ~ ' IJ ,4(n , , . - l )+q) ,  ..., ~ ~ 1 ~ , 4 ( n , , , - u , . + l ) + q )  

(where q = 0,2 and r = A,,  E, Fl for q = 0 and r = A,, E, F2 for q = 2) are non-vanishing 
and linearly independent, i.e. they form the basis of the functions belonging to the 
irrep Dl' of the group 0 in the subspace spanned by the functions Iqn) with q = 0, 2. 

Conclusion (Id). vr functions 

P1'IJ,4n,,.+q), PrIJ,4(n,i"+l)+q), , P'IJ, 4(nmtn+ vr- I ) +  4 )  

(where q = 0 , 2  2nd !- = A , ,  E, F, fer q = 0 and !- = A 2 ,  E, F2 fer q = 2) Ere non-vanishin. D 

and linearly independent, i.e. they form the basis of the functions belonging to the 
irrep Dr of the group 0 in the subspace spanned by the functions ( q n )  with q = O ,  2. 

Studying the spectrum of the matrix 6" we deal only with the terms pertaining to 
symmetries F , ,  E or A, in the case of q = 0 and with the terms pertaining to symmetries 

short notation D F  and D" for the irreps DFi and DA' in the case of q = 0 and for the 
irreps DF2 and D A z  in the case of q=2 .  We shall discuss only the spectra with J > 3 ,  
when U, s vE s up. 

The structure of the spectrum of the matrix ,Qq at special points 0 = 0; depends 
on the value of i =  N"', i.e. on the dimension of the submatrix H"'. We shall treat 

The values i >  N q / 2  d o  not need special treatment because by virtue of symmetry 
properties (11) and (12)  in the case of even q the spectra of the operator h(Ob)  for 
i = j and for i = N4 - j are identical. 

Let i s  v,. In this case the submatrix Hi" yields i linearly independent eigenfunc- 
tions e:(", A = 1 . 2 , .  , , , i and i eigenvalues E Y ' .  As in the previous section, we obtain 

independent. Since the operators Pr commutate with the Hamiltonian, then each of 
the functions PrC:('), r = A ,  E, F is the eigenfunction of the Hamiltonian h ( 0 ; )  
corresponding to the eigenvalue EY'. Thus, eachoftheeigenvalues Ey'ofthesubmatrix 
H"' turns out to be a crossing of three terms with symmetries A, E and F, SO that the 

r;. r;. -- A :- +La .-ora -F - 1 % n o n  eoolr ,.,:I1 h m  r m o + n A  tann+hnr h.nlA.ii 1 3 r : n n  rhn 1 2 ,  I U, -2 111 L. . l  UY11  Y l  y -i. 1..11.. --*..I "ll. "I L L I Y L b Y  L"~'L"... " U L Y I I ,  """'6 L L . I  

:he .;"!ces. i y4/? ( y F  + + L,A)/?,  correspcnd to the v2].es .K, 3 2 (10). 

th"! the f,,&ens p A q ' l ' ,  pE6';"' 2nd P F p  are fian-vafiiohing and !inearly 
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total multiplicity of degeneracy in the triple points A+ E +  F is 1 + 2 + 3  =6. So, if the 
parameter 0 of the Hamiltonian ( 5 )  takes on the values 0 = Ob, where 0; are the roots 
of (10) for K ;  =4(n, , , - i+ l )+q,  i =  1,2,. . . , U,,  q = O ,  2, then i triple points of the 
type A + € +  F occur in the spectrum of the Hamiltonian (5). 

Let uA < i s vE. A slight modification of the above reasoning brings us to the result 
that, in this case, each of i eigenvalues E y ) ,  A = 1,2, .  . , , i, of the submatrix H'" 
appears to be a crossing of terms of the type E and F, while only U, of these eigenvalues 
are actually triple points of the type A + E + F. So, if the parameter 0 of the Hamiltonian 
(5)takesonthevaluesO=0$,whereC3~aretherootsof(lO) forKt=4(n,,,-i+1)+q, 
i = U,+ 1, u A + 2 , .  . . , vE, q = 0, 2, then the spectrum of the Hamiltonian ( 5 )  comprises 
vA triple points of the type A + E + F, and i - U, double points of the type € + F. 

Let vE > i. The submatrix H"' is an N'"x N"' m atrix with i = N"'. We have 
N"'S N 9 / 2 =  ( uF + uE + w A ) / 2 ,  while vF 3 vE + U,. So, N ( ' ) <  vF, and we are actually 
studying the case uE < is vF.  Thus, if €it', A = 1,2 , .  . . , i, are eigenvalues of the 
submatrix then each of the terms with energies E = .E?', A = 1,2, .  . . , i, contains 
a component with symmetry F, but only U ,  ( v E )  of these terms contain a component 
with symmetry A (E). It should be remembered that each of the terms with energies 
E = EY',  A = 1 , 2 , .  . . , i is at least two-fold degenerate due to the equivalence of the 
spectra of the submatrices H"' and H"', i.e. each of the terms is at least a double 2oint. 

Now examine the spectrum of the eigenvalues E?', A = 1 , 2 , .  . . , NI2', of the 
N!') x N(2 '  submatrix ifc". Remember that N"' = vF + vg + v,-Si. From the expiicit 
form of the operators PFl and PFz (see (8)), it is seen that the functions P F l q n ) ,  
n E [ -n ,  + 1 - 412, ni - 11 are orthogonal to the functions PFlq, n ) ,  n E [ ni, n,,,]. Hence, 
among the terms with energies € = €?), A = 1 , 2 , .  . . , N'" there are only uF - i terms 
E" with symmetry F; all the terms EPi d o  not degenerate with the eigenvalues E Y )  
of the submatrices H"' and H"'. The remaining N"'- uF+ i = uE + v, - i terms with 
energies E = E:) Bie of syriimeiry A ~~ E aiid degenerate E ~ J  

Table 2. Double and triple points in the spectrum of the Hamiltonian (5) .  ( a )  The spectrum 
of the matrix aq at special points @=Ob for q = 1 or q = 3 .  ( b )  The spectrum of the 
matrix B" at special points 0 =e; for q = O  (terms A, ,  E, and F , )  and Q = 2  (terms A,, 
E, and F2) 

( a )  

Number of 
non-crossing tems 

Number of double points 
i FI + 6 F, F* 

Number of Number of 
double points non-crossing terms 

Number of triple 
poims A +  E + F A t F E + F  A E F 
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of the submatrices H"' and H'". Therefore, uE + U, - i eigenvalues of each of the 
submatrices H"', HI2' and H") are the same, i.e. vE + v, - i eigenvalues of the initial 
matrix aq are triply degenerate. This means that the spectrum of the Hamiltonian 
h ( 0 b )  comprises vE + U, - i triple points of the only possible type A + E + F. Besides, 
i - ( U, + U, - i )  = 2i - U, - U, terms with energies E = E?' are double points of the 
type of F + A  or F + E .  Since v E +  U , - i  terms with symmetry A are included in the 
triple points, the spectrum comprises v, - ( uE + U, - i )  = i - v E  double points of 
the type F + A  and i -  U, double points of the type F + E .  

So, if the parameter 0 of the Hamiltonian ( 5 )  takes on the values 0 =Ob, where 
0;  are the roots of (10) for K ,  =4(n , . , - i+ l )+q ,  i =  uE +1, uE +2, .  . . , vF, q =0, 2, 
then the spectrum of the Hamiltonian ( 5 )  comprises uE + U, - i triple points of the 
type A + E + F, i - v E  double points of the type A+ F, and i - U, double points of the 
type E + F. 

A M Shirokov and Yu F Smirnov 

J - 3 2  K, i 21 

KzJ-3. J-1 

12 c 

5 4  

-2t  -4I 

Figure 1. The spectrum of the levels of the matrix 8" at q = I ,  3 = 3 2  at the special point 
0 = 0:. i = 3. which corresponds to K, = 21. To the left IS the energy spectrum of the 
submatrix H'"; to the right is the energy spectrum of the submatrix H"'. Each of the 
levels is labelled with its symmetry. Since some of the levels of a given submatrix are close 
to each other, by virtue of the cluster structure oflhe spectrum, each of the levels presented 
is shifted slightly to the right with respect to the nearest-neighbouring high-lying level to 
avoid their merging. 
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H F , + E + A ,  H F , * E + A ,  H F,*E*A,  

H F  
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-10 + 
I I H F , * E + A ,  H F , * E * A ,  H F,*E+Ar 

Figure 2. The spectrum of the levels of the matrix 8" at q =0, J = 3 2  at the special point 
0 =Ob, i = 5 ,  which corresponds to K .  =16. To the left, middle and right are the energy 
spectra of the submatrices H"', Hi') and H"), respectively. The remaining designations 
are the same as in figure 1. At J = 32 we have v A ,  = 3, Y-, = 8, and 
the spectrum comprises three triple points of the type A, + E + Fl and two &auble points 
of the type E + F, . 

= 6, i.e. v1 < i < 

Table 2 summarizes the results of our analysis of the double and triple points of 
the Hamiltonian ( 5 ) .  Note that the total multiplicity of degeneration of levels is six at 
the triple points A + E + F, six at the double points Fl + F z ,  five at the double points 

the spectra of eigenvalues of the matrices Qq at the special values of the parameter 
CI c - -A F -.._ ..+ rl-..L.l- A I  C Cin..mr 1 -..A 1 -I.-.., r n - ~  auo-..lnl -F  L 7 r, a,," ,"U, a, L1,S """"I~ Y"."L" " 1 1 . 1 'bULC" n (I,," L a,.",, a",,,., C"(IL1L'p~u U, 

0=0;. 

6. Discussion 

We have established that simultaneous crossings of terms occur at several different 
energies at the special points 0 = 0' in the spectrum of the Hamiltonian ( 5 ) .  The 
degeneration of terms belonging to different irreps D'I, D'l,. . . , Drs of the symmetry 
group G of a quantum system is usually accounted for by the actual higher symmetry 
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92 G of the Hamiltonian H, so that the space of representations Drl + D">+. . .+ Drr 
reducible with respect to the group G proves to be irreducible with respect to the 

Judd (1957) has demonstrated that a linear combination of the rank-six invariants 
of the cubic group may possess icosahedral symmetry Y. However, the group Y 
possesses irreps of dimensions one, three, three, four and five, and cannot be responsible 
for the six-fold degeneration of levels forming triple or double points. The Hamiltonian 
h ( 0 )  at special values of the parameter 0 = 0' may have been expected to be symmetric 
wiih respect to some point group 3 in the four-dimensionai space or in a space of a 
higher dimension, for example with respect to the symmetry group of a four-dimensional 
cube. However, the symmetry with respect to the multidimensional point group F?> 0 
should give rise to degeneration of not only one or several terms of the type T =  

A , + E +  F,  belonging to the irrep D' of the group 9, but also to a simultaneous 
degeneration of all the triplets of terms A , ,  E and Fl forming other levels with symmetry 
7 of the Hamiltonian h ( 0 ' ) .  Besides, degeneration of terms forming other irreps D", 
D'", . . . of the group 9 should b e  also expected at the same value of 0 = Qi, Indeed, 
the degeneration of terms of the types T' =A,+ E + F2 and T" = F, + F2 are observed 
in the spectrum, but at other values of the parameter 0 = 0" and 0 = 0'". 

It should be noted that the number N of the values of the parameter 0=0', 
02,. . .,ON at which the spectrum of the operator h ( 0 ' )  comprises triple or double 
points is sufficiently large ( N - J ) .  Had the double and triple points been relevant to 
the existence of a multidimensional symmetry group F? of the Hamiltonian h ( 0 )  for 
0 =e', i = 1,2,. . . , N, the symmetry group 9' should have been replaced consecutively 
by groups W+',  Yt2 ,... for @ = O s + ' ,  0'+', Such a number of high-symmetry 
groups for the Hamiltonian h ( 0 )  seems unlikely. Therefore, the accidental degeneracy 
of the spectrum of the Hamiltonian ( 5 )  in the form of double and triple points is most 
probably irrelevant to increasing symmetry of the Hamiltonian. 

If J + q  then for sufficiently large values of 11(1 we have I@)KK/aK.K141+0 (see 
Harter and Patterson 1977, 1979, Zhilinskii 1979). So, in the classical limit J-tm, we 
may neglect non-diagonal matrix elements Q,,,, with sufficiently large values of IKl 
in (6) and interpret the degeneration of the six-fold clusters in the limit as the formation 
of the double and triple points of the type F, + F2 and A i  E + F, respectively. In the 
general quantum case, the six-foid clusters are non-degenerate, but as a reflection of 
the classical degeneration the exact accidental degeneracy occurs at special values of 
the parameter @=e'. The larger is the value of J the more often the accidental 
degeneracy occurs and, in the classical limit J+m, all the values of the parameter 0 
give rise to the occurrence of double and triple points. 

Note, that the 'number-theoretic' accidental degeneracy discussed by Berry and 
Wilkinson (1984) and by Dirl and Moshinsky (1985) exhibits the same tendency in 
the classical limit. 

In experimental studies of rotational spectra of cubic-symmetry molecules, double 
and triple points should manifest themselves as an anomalously low splitting of some 
of the six-fold clusters at the values of 0 close to one of the special points 0' prescribed 
by (IO) and, also, as an anomalously low splitting between a pair or a triplet of levels 
forming some of the eight- or 12-fold clusters if the value of 0' is sufficiently large. 
Obviously, the parameter 0 is a constant characterizing a given particular molecule 
and does not depend (or depends little) on the total angular momentum 1. At the same 
time, for sufficiently large values of J, ( J ~ ~ ~ 6 ~ ~ J ) / ( J ~ ~ ~ 4 ~ ~ ~ ) -  J ( J + I ) ,  thus, from (10) we 
obtain tan 0 ' - [ J ( J +  l)]-', i.e. the positions of the special points 0' are different for 

A M Shirokou and Yu F Smirnov 

group 9. 



Double and triple points 2975 

different values of 1. Therefore, the anomalously low splitting of levels due to the 
occurrence of double or triple points in the spectrum should be observed only at some 
values of J, rather than at any value of 1. So, by increasing the angular momentum J, 
we may attain the situation where the value of the parameter 0 will successively 
approach the special points Q', Q"', , . . . , so that the number of double and/or 
triple points in the spectrum will be different at each new value J(, Jj+,, Jj+,,.  . . . From 
the quasiclassical estimates (Harter and Patterson 1977, 1979, Braun et a/ 1985) it 
follows that the splitting of the levels in a cluster decrease smoothly with increasing 
of 1. The occurrence of double and triple points in the spectrum will result in a sudden 
pronounced decrease of the splitting of N ,  triplets of levels F , ,  A ,  and E at a certain 
value of J = J,, of N ,  pairs of levels F, and F2 at J = J2 > J,, of N ,  triplets of levels 
F2, A, and E at J = J3> J 2 ,  of NI pairs of levels F, and F2 at J4> J 3 ,  of N ,  + 1 triplets 
of levels F , ,  A ,  and E at  J = Js > J4, etc. 

It should be pointed out that the accidental degeneracy is the general property 
essential to any system pertaining to cubic symmetry, and the double and triple points 
should be observed not only in the rotational spectra of cubic-symmetry molecules, 
but in the spectra of an impurity ion in a crystal field as well. In studying the spectra 
of an impurity ion, half-integer values of J are actual, too. All the above treatment 
may be generalized to the case of the half-integer J. As the result we obtain that the 
double points of the type E'+ G or E"+ G with the total six-fold degeneracy occur 
in the spectrum at special points 0 = 0'. For details see the paper of Sviridov eta/ (1991). 

In parallel with studying the double and triple points in the spectrum of the 
cubic-symmetry Hamiltonian ( 5 ) ,  we constructed.the basis of irreps Dl' (r= A , ,  A2 ,  
'E, F, , F2) of the group 0 in the subspace of irrep D' of the SO(3) group. Summarizing 
conclusions (la),  ( lb),  (IC) and (Id) we may formulate: 

Theorem 1.  All the functions P"lq, n,,,+ 1 - i), where i = 1, 2, . . . , v r ,  r = A , ,  A , ,  E, 
F , ,  F,, and q takes on any value compatible with a given symmetry r, are non-vanishing 
and linearly independent, i.e. they form the basis of irreps D r  of the group 0 in the 
space of irreps D' of the SO(3) group. 

Theorem 2. All the functions P"lq, nmin - 1 + i ) ,  where i = 1, 2,. . . , vr, r = A , ,  A , ,  E, 
F l ,  F2, and q takes on any value compatible with a given symmetry r, are non-vanishing 
and linearly independent, i.e. they form the basis of irreps Dl' of the group 0 in the 
space of irreps D' of the SO(3) group. 

Nearly the same basis has been proposed by Cheglokov and Ulenikov (1985), but 
they have not proved the linear independence of the basis functions. Theorems 1 and 
2 may be generalized for the case of the double cubic group 0' and half-integer values 
of J (Sviridov et a/ 1991). 

From the explicit form of the projection operators (8) and with relation P"Pr = P' 
it is seen that the basis functions Pl'lq, n )  with n = n,,,, n,,, - 1, . . . , n,,;- v,+ 1 
( n  = nmin, n,;.+ 1,. . . , n,,.+ Y,-- 1) and r = F, or r = F2 for q = 0, 2 are mutually 
orthogonal. Nevertheless, all the other basis functions of the type Pl'lq, n )  are not 
orthogonal. The most natural orthogonalization procedure seems to be the diagonal- 
ization of the operator T4 in the given basis with a view to using its eigenfunctions as 
an orthogonal basis. The commutativity of the operators P' and T4 may readily be 
used to reduce the orthogonalization of the basis to the diagonalization of tridiagonal 
vr x wr matrices. 
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In conclusion, it should be noted that the methods based on the properties of 
eigenvalues and eigenfunctions at different values of the parameter 0 of the operator 
invariant with respect to a given group were probably not used earlier to construct the 
bases of irreps of the groups. Nevertheless, the method may prove to be useful in some 
problems, for example in the problem of constructing the basis for the SU(3) group 
in the Elliot scheme, if the operators T4 and T6 are replaced by the operators 
(Bargman and Moshinsky 1961) and a’ (Judd et ol 1974). 
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